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Abstract

Masonry is a composite material made of units (brick, blocks, etc.) and mortar. For periodic arrangements of the

units, the homogenisation techniques represent a powerful tool for structural analysis. The main problem pending is the

errors introduced in the homogenisation process when large difference in stiffness are expected for the two components.

This issue is obvious in the case of non-linear analysis, where the tangent stiffness of one component or the tangent

stiffness of the two components tends to zero with increasing inelastic behaviour.

The paper itself does not concentrate on the issue of non-linear homogenisation. But as the accuracy of the model is

assessed for an increasing ratio between the stiffness of the two components, the benefits of adopting the proposed

method for non-linear analysis are demonstrated. Therefore, the proposed model represents a major step in the ap-

plication of homogenisation techniques for masonry structures.

The micro-mechanical model presented has been derived from the actual deformations of the basic cell and includes

additional internal deformation modes, with regard to the standard two-step homogenisation procedure. These

mechanisms, which result from the staggered alignment of the units in the composite, are of capital importance for the

global response. For the proposed model, it is shown that, up to a stiffness ratio of one thousand, the maximum error in

the calculation of the homogenised Young’s moduli is lower than five percent. It is also shown that the anisotropic

failure surface obtained from the homogenised model seems to represent well experimental results available in the

literature. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Masonry is a composite material made of units and mortar, normally arranged periodically. Utilising the
material parameters obtained from experiments and the actual geometry of both components, viz. units
(e.g. bricks, blocks or stones) and joints, it is possible to numerically reproduce the behaviour of masonry
structures, see e.g. Lofti and Shing (1994), and Lourenc�o and Rots (1997). Nevertheless, the representation
of each unit and each joint becomes impractical in case of real masonry structures comprising a large
number of units.
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The alternative is to describe the composite behaviour of masonry in terms of macro or average stresses
and strains so that the material can be assumed homogeneous. This problem can be approached, basically,
from two directions. A possible direction is to gather extensive experimental data that can be used confi-
dently in the analyses. It is stressed that the results are limited to the conditions under which the data are
obtained. New materials and/or application of a well known material in different loading conditions might
require a different set of costly experimental programs. Another direction, adopted in this paper, is to seek a
more fundamental approach which resorts to homogenisation techniques. This approach, which aims at
describing the behaviour of the composite from the geometry and behaviour of the representative volume
element (or basic cell, see Fig. 1), grants us a predictive capability.

The techniques of homogenisation (Bakhvalov and Panasenko, 1989) are currently becoming increas-
ingly popular among the masonry community. A method that would permit to establish constitutive re-
lations in terms of averaged stresses and strains from the geometry and constitutive relations of the
individual components would represent a major step forward in masonry modelling. Given the difficult
geometry of the masonry basic cell, a close-form solution of the homogenisation problem seems to be
impossible, which leads, basically, to three different lines of action.

The first, very powerful approach is to handle the brickwork structure of masonry by considering the
salient features of the discontinuum within the framework of a generalised/Cosserat continuum theory.
This elegant and efficient solution (Besdo, 1985; M€uuhlhaus, 1993) possesses some inherent mathematical
complexity and has not been adopted by many researchers, even though being capable of handling the unit–
mortar interface and true discontinuum behaviour. The step towards the practical application of such an
approach is still to be done.

A second approach (Anthoine, 1995, 1997; Urbanski et al., 1995) is to apply rigorously the homoge-
nisation theory for periodic media to the basic cell, i.e. to carry out a single step homogenisation, with
adequate boundary conditions and exact geometry. It is stressed that the unit–mortar interface has not yet
been accounted for by researchers. The complexity of the masonry basic cell implies a numerical solution of
the problem, which has been obtained using the finite element method. The theory was thus used by the
cited authors to determine macro-parameters of masonry and not, actually, to carry out analysis at the
structural level. In fact, the rigorous application of the homogenisation theory for the non-linear behaviour
of the complex masonry basic cell implies solving the problem for all possible macroscopic loading his-
tories, since the superposition principle does not apply anymore. Thus, the complete determination of the
homogenised constitutive law would require an infinite number of computations.

The third approach can be considered as an ‘‘engineering approach’’, 2 aiming at substituting the
complex geometry of the basic cell by a simplified geometry so that a close-form solution of the homog-

Fig. 1. Basic cell for masonry and objective of homogenisation.

2 ‘‘Engineering’’ is used here not in the sense that it is empiric or practical but in the sense that must be engineered from reasoning.
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enisation problem is possible. Keeping in mind the objective of performing analysis at the structural level,
Pande et al. (1989), Maier et al. (1991) and Pietruszczak and Niu (1992) introduced homogenisation
techniques in an approximate manner. The homogenisation has generally been performed in two steps,
head (or vertical) and bed (or horizontal) joints being introduced successively. In this case masonry can be
assumed to be a layered material, which simplifies the problem significantly. Lourenc�o (1996) further de-
veloped the procedure, presenting a novel matrix formulation that allows a much clearer implementation of
linear elastic homogenisation algorithms and also a relatively simple extension to non-linear behaviour.
Again, it is stressed that the unit–mortar interface has not been accounted for by the cited researchers.

The use of two separate homogenisation steps does not explicitly account for the regular offset of vertical
mortar joints belonging to two consecutive layered unit courses. Moreover, the final result depends on the
order in which the two homogenisation processes are carried out. Nevertheless, this simplified homoge-
nisation approach has been used by several authors and performs very satisfactorily in the case of linear
elastic analysis (Anthoine, 1995; Lourenc�o, 1997). For the case of non-linear analysis, where the ratio
between the stiffness of unit and mortar becomes larger, the simplified homogenisation approach leads to
non-acceptable errors and should not be used. Lourenc�o (1997) has shown that large errors can occur in the
standard two-step homogenisation technique if there are large differences of stiffness (>10) between unit
and mortar. Anthoine (1995, 1997) has shown that the standard two-step homogenisation technique does
not take into account the arrangement of the units in the sense that different bond patterns (running bond
and stack bond for example) may lead to exactly the same result.

A different engineering approach has been proposed by Bati et al. (1999), in which a close-form solution of
the periodic arrangement of units and mortar has been obtained, by substituting the parallelepiped-shaped
units by elliptic cylinders. This mathematically elegant solution does not represent well the geometry and it is
unclear if it represents an advantage with regard to the standard two-step homogenisation technique.

The present paper presents a new micro-mechanical model, for masonry in stretcher bond, 3 to overcome
the limitations of the standard two-step homogenisation by a more detailed simulation of the interactions
between the different internal components of the basic cell. The model can still be considered as an engi-
neering approach, in which an ingenious observation of the behaviour of masonry leads to the simulation of
additional internal deformation mechanisms of the joints, that become more and more important for in-
creasing unit/mortar stiffness ratios. At this stage, the unit–mortar interface is not considered in the model.

It is noted that micro-mechanical approaches that consider additional internal deformation mechanisms
have been derived independently by van der Pluijm (1999) for the analysis of masonry subjected to flexural
bending and by Lopez et al. (1999) for the non-linear analysis of masonry walls subjected to in-plane loading.

In this paper, the full three-dimensional behaviour will be considered and attention will be given to a
comparison between the results from a detailed finite element analysis (FEA) and the proposed micro-
mechanical homogenisation model, in order to demonstrate the efficiency of the proposed solution. Finally,
the adequacy of the model to reproduce the anisotropic failure surface of masonry will be discussed by
means of a comparison with available experimental results.

2. Descriptive analysis of masonry

As a consequence of the differences in stiffness between units and mortar, a complex interaction between
the two masonry components occurs when masonry is deformed. The differences in stiffness cause a unequal
distribution of deformations over units and mortar, compared with the average deformation of masonry

3 ‘‘Stretcher bond’’ represents the typical arrangement of masonry units in a wall, with an offset half unit for the vertical mortar

joints belonging to two consecutive masonry courses. The ‘‘stacked bond’’ arrangement, in which the vertical joints run continuously

through all the courses, is not allowed for structural purposes by most masonry codes.
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composite. As a result the individual (internal) stresses of units and mortar deviate from the average
(external) stresses of the composite.

For the purpose of understanding the internal deformational behaviour of masonry components (units
and mortar), when average deformations occur on the boundaries of the basic cell, detailed finite element
calculations have been carried out for different loading conditions. For a clear discussion of the internal
distribution of stresses, a right-oriented x–y–z coordinate system was defined, where the x-axis is the
parallel to the bed joints, the y-axis is parallel to the head joints and the z-axis is the normal to the masonry
plane, see Fig. 2. This figure also shows the components considered in the present paper. The cross joint is
defined as the mortar piece of the bed joint that is connected to the head joint.

The mesh used in the analyses is depicted in Fig. 3 and consists of 24� 4� 12 twenty-noded quadratic
three-dimensional elements with reduced integration. The unit dimensions are 210� 100� 52 mm3 and the
mortar thickness is 10 mm. The assumption that the units are stiffer than the joints is usually made by the
masonry research community. In the present analysis, in order to better understand the deformational
behaviour of the mortar, the units are considered infinitely stiff (for this purpose, the adopted ratio between
unit and mortar stiffness was 1000).

Fig. 2. Definition of (a) masonry axes and (b) masonry components considered in the analysis: unit, head joint, bed joint and cross

joint.

Fig. 3. Finite element mesh for the basic cell adopted in the analyses.
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Fig. 4 illustrates the deformation corresponding to the analysis of the basic cell under compression along
the axes x, y and z, and under shear in the planes xy, xz and yz. Loading is applied with adequate tying of
the nodes in the boundaries, making use of the symmetry and antisymmetry conditions appropriate to each
load case. Therefore, the resulting loading might not be associated with uniform stress conditions or
uniform strain conditions. Linear elastic behaviour is assumed in all cases.

Fig. 4. Deformed configuration resulting from the FEA on the basic cell: (a) compression x, (b) compression y, (c) compression z,

(d) shear xy, (e) shear xz and (f) shear yz.
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Fig. 4a demonstrates that, for compression along the x-axis, the unit and the bed joint are mostly
subjected to normal stresses, the bed joint is strongly distorted in shear and the cross joint is subjected to a
mixed shear/normal stress action. While the cross joint effect can be neglected if the cross joint is small
compared to the basic cell, the shear of the bed joint must be included in the micro-mechanical model of
masonry for stiff units.

Fig. 4b demonstrates that, for compression along the y-axis, the unit and the bed joint are mostly
subjected to normal stresses, and the head and cross joints are subjected to a mixed shear/normal stress
action. These relatively local effects are difficult to include in the micro-mechanical model, have small in-
fluence on the overall behaviour of the basic cell and will not be considered. This is confirmed by the results
of Lourenc�o (1997) where it was shown that the standard two-step homogenisation technique, which ne-
glects such effects, leads to almost exact results (errors smaller than 2% for ratios unit/mortar stiffness up to
1000).

Fig. 4c demonstrates that, for compression along the z-axis, all components of the basic cell are subjected
to a truly homogeneous state of normal stress. This again is confirmed by the results of Lourenc�o (1997)
where it was shown that the standard two-step homogenisation technique leads to almost exact results
(errors smaller than 0.2% for ratios unit/mortar stiffness up to 1000).

Fig. 4d demonstrates that, for xy shear, the unit and the head joint are mostly subjected to shear stresses,
the bed joint is strongly distorted in the normal direction (tension) and the cross joint is subjected to a
mixed shear/normal stress. Due to antisymmetric conditions, the neighbouring basic cells will feature
normal compression in the bed joint. While the cross joint effect can be neglected if the cross joint is small
compared to the basic cell, the normal stress of the bed joint must be included in the micro-mechanical
model.

The deformation of the basic cell under xz shear is shown in Fig. 4e. The cell components are mostly
subjected to shear stresses, with unit and head joint deformed in the horizontal plane, while the bed joint is
distorted also in the vertical plane. Therefore the shear stress ryz cannot be neglected in a micro-mechanical
model.

Finally, the deformation of the basic cell under yz shear is shown in Fig. 4f. All cell components are
mainly distorted by shear in the vertical plane, while minor local stress components do not produce sig-
nificant overall effects.

3. Formulation of the micro-mechanical model

3.1. General

Lourenc�o (1997) has shown that large errors can occur in the standard two-step homogenisation
technique if there are large differences of stiffness (>10) between unit and mortar. The micro-mechanical
model presented in this paper overcomes this limitation by a more detailed simulation of the interactions
between the different internal components of the basic cell.

The main idea of this approach, derived from observations of deformations calculated with the finite
element analyses shown in the previous section, is that the standard two-step homogenisation technique
neglects some deformation mechanisms of the bed joint, that become more and more important for in-
creasing unit/mortar stiffness ratios, such as

• vertical normal stress in the bed joint, when the basic cell is loaded with in-plane shear;
• in-plane shear of the bed joint, when the basic cell is loaded with an horizontal in-plane normal

stress;
• out-of-plane shear ryz of the bed joint, when the basic cell is loaded with out-of-plane shear stress rxz.
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These mechanisms are due to the staggered alignment of the units in a masonry wall and are neglected by
the standard two-step homogenisation techniques, which are based on the assumption of continuous
perpendicular head joints.

Due to the superposition principle, which applies in linear problems, the elastic response of the basic cell
to a generic load can be determined by studying six basic loading conditions: three cases of normal stress
and three cases of simple shear. In the present formulation, for each loading case and each basic cell
component, suitably chosen components of the stress and strain tensors are assumed to be of relevance for
the stress–strain state of the basic cell, while all the others are neglected, see Figs. 5 and 6 for examples.
Equilibrium is, of course, ensured for all loading cases. The number of unknowns of the problem is larger
than in the usual homogenisation procedure in order to take into account the above ‘‘second-order’’ effects.
The unknown internal stresses and strains can be found from equilibrium equations at internal interfaces
between basic cell components, with a few ingenious assumptions on the cross joint behaviour and on the
kinematics of the basic cell deformation, see Fig. 7 for the adopted geometric symbols. The equivalent
properties of an homogenised material are then easily derived from the internal stresses and strains, by
forcing the macro-deformation of the model and of the homogenised material to be the same, meaning that
both systems must contain the same strain energy.

3.2. Young’s moduli and Poisson’s coefficients

The Young’s moduli and the Poisson’s coefficient of an equivalent orthotropic material can be derived
from the elastic strains of the basic cell loaded with a uniform normal stress on the two faces perpendicular
to a given axis (x, y or z). All other stresses vanish on the boundary. Fig. 8 shows the case of uniform
loading in the horizontal in-plane direction (x-axis). In this case all shear stresses and strains inside the basic

Fig. 5. Normal stress loading parallel to the x-axis: (a) equivalent homogenised cell; (b) assumed deformation behaviour; (c) assumed

involved stress components.

A. Zucchini, P.B. Lourenc�o / International Journal of Solids and Structures 39 (2002) 3233–3255 3239



cell are neglected, except the in-plane shear stress and strain (rxy and exy) in the bed joint and in the unit.
Non-zero stresses and strains are assumed to be constant in each basic cell component, except the normal
stress rxx in the unit, which must be a linear function of x to account for the effect of the shear rxy in the bed
joint, and the shear stress rxy in the unit, linear in y.

With these hypotheses, the following relations hold for the stresses at internal or boundary inter-
faces:

Interface brick–head joint r2
xx ¼ �rrb

xx � r1
xy

l� t
2h

ð1Þ

Interface brick–bed joints rb
yy ¼ r1

yy ð2Þ

Right boundary hr2
xx þ 2tr3

xx þ h �rrb
xx

�
þ r1

xy

l� t
2h

�
¼ 2ðhþ tÞr0

xx ð3Þ

Fig. 6. Normal stress loading parallel to the y-axis: (a) equivalent homogenised cell; (b) assumed deformation behaviour; (c) assumed

involved stress components.
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Upper boundary lrb
yy þ tr2

yy ¼ ðlþ tÞr0
yy ð4Þ

Front boundary 2thr2
zz þ 2ðl� tÞtr1

zz þ 2lhrb
zz þ 4t2r3

zz ¼ ½2thþ 2ðlþ tÞt þ 2lh�r0
zz ð5Þ

and for the strains:

Upper boundary 2te1yy þ hebyy ¼ he2yy þ 2te3yy ð6Þ

Right boundary te2xx þ l�eebxx ¼ 2te3xx þ ðl� tÞe1xx ð7Þ

Front boundary ebzz ¼ e1zz ð8Þ

Front boundary ebzz ¼ e2zz ð9Þ

Fig. 7. Adopted geometry symbols.

Fig. 8. Model assumptions for compression along the x-axis.
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where l is half of the unit length, h is half of the unit height and t is half of the bed joint width. Unit, bed
joint, head joint and cross joint variables are indicated throughout this paper respectively by the super-
scripts b, 1, 2 and 3, respectively. �rrb

xx and �eebxx are the mean value of the normal stress rxx and normal strain exx
in the unit. r0

xx, r0
yy , r0

zz are the uniform normal (macro) stresses on the faces of the homogenised basic cell,
respectively in the x-, y- and z-directions. The equilibrium of the unit (Fig. 9) yields:

hrb1
xx þ ðl� tÞr1

xy ¼ hrb2
xx ð10Þ

where we assume that the shear acts only on the bed–unit interface (l� t).
If rb

xx is linear in x, its mean value in the mid-unit (equal to the mean value in the unit) is

�rrb
xx ¼

rb1
xx þ rb2

xx

2
ð11Þ

From Eqs. (10) and (11) we get

rb1
xx ¼ �rrb

xx � r1
xy

l� t
2h

rb2
xx ¼ �rrb

xx þ r1
xy

l� t
2h

ð12Þ

Fig. 9. Normal stress loading parallel to the x-axis: unit equilibrium (couple moment equal to self-equilibrating vertical stress dis-

tribution).
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which have been used in Eqs. (1) and (3). The couple required for the momentum equilibrium of one-fourth
of the unit in the basic cell (Fig. 5) derives from the neighbouring cell along y-axis. The symmetric unit
quarter of the cell above (Fig. 9) reacts at the centre line of the unit with a couple due to a self-equilibrating
vertical stress distribution, which is neglected in the model.

In Eqs. (1)–(9) the unknown stresses and strains in the cross joint can be eliminated by means of the
following relations:

e3yy ¼
E2

E3

e2yy r3
zz ¼

E3

E1

r1
zz e3xx ¼

E1

E3

e1xx ð13Þ

r3
xx ¼ r1

xx ð14Þ

Eq. (13) assume that the cross joint behaves as a spring connected in series with the bed joint in the x-
direction, connected in series with the head joint in the y-direction and connected in parallel with the bed
joint in the z-direction. Eq. (14) represents the equilibrium at the cross–bed joint interface. It can be noted
that the stress–strain state in the cross joint does not play a major role in the problem, because of its usually
small volume ratio, so finer approximations are not considered.

Introducing Eqs. (13) and (14) in Eqs. (1)–(9) results in the elimination of all unknowns related to the
cross joint. Further coupling with the nine elastic stress–strain relations in the unit, head joint and bed joint,
namely,

ekxx ¼
1

Ek
rk
xx

h
� mk rk

yy

�
þ rk

zz

�i

ekyy ¼
1

Ek
rk
yy

h
� mk rk

xx

�
þ rk

zz

�i
; k ¼ b; 1; 2;

ekzz ¼
1

Ek
rk
zz

h
� mk rk

xx

�
þ rk

yy

�i
ð15Þ

yields a linear system of 18 equations. The unknowns are the six normal stresses and strains of the three
components (unit, head joint and bed joint) and the shear stress and shear strain in the bed joint,
amounting to a total of 20 unknowns.

Two additional equations are therefore needed to solve the problem. The equations can be derived
introducing the shear deformation of the bed joint: the elastic mismatch between the normal x strains in the
unit and in the head joint is responsible for shear in the bed joint because of the staggered alignment of the
units in a masonry wall. This mechanism is clear in Fig. 8 (where only the horizontal displacements have
been magnified for sake of clearness) and leads to the approximated relation: 4

e1xy ¼
1

2

Dx2 � Dxb
2t

¼ e2xxt � eb2xx t
4t

ffi e2xx � �eebxx
4

ð16Þ

This relation holds in the hypothesis that the bed joint does not slip on the unit. With the additional elastic
relation

r1
xy ¼ 2G1e

1
xy ð17Þ

4 If the assumed linear behaviour of ebxx in x is taken into account, it would lead to eb2xx ¼ �eebxx þ r1xyðl� tÞ=2hEb, but usually the second

term in the right-hand side can be neglected.
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a system of 20 equations and 20 variables is finally obtained. This linear system of equations can be solved
numerically 5 to give the internal stresses and strains for uniaxial load in the i-direction, given by

r0
ii ¼ 1; r0

jj ¼ 0 ðj 6¼ iÞ; i; j ¼ x; y; z ð18Þ

where i represents the three orthogonal directions associated with the axis x, y or z. The shear stress in the
unit can be found by means of the internal equilibrium equation

orb
xx

ox
þ
orb

xy

oy
þ orb

xz

oz
¼ 0 ð19Þ

which leads to

rb
xy ¼ r1

xy 1
�

� y
h

�
ð20Þ

The homogenised Young’s moduli and Poisson’s coefficients of the basic cell are finally

Ei ¼
r0
ii

eii
; mij ¼

ejj
eii

� �
i

; i; j ¼ x; y; z ð21Þ

where

exx ¼ e1xx
l� t þ 2tE1=E3

lþ t

eyy ¼
e2yyðhþ 2tE2=E3Þ þ hebyy

2ðt þ hÞ
ezz ¼ ebzz

ð22Þ

and the subscript i in the Young’s modulus E and the Poisson’s ratio calculation ð Þi indicates that the values
are calculated for uniaxial loading in the i-direction (i ¼ x; y; z).

3.3. In-plane shear modulus Gxy

The homogenised shear modulus Gxy can be calculated by loading the basic cell with simple in-plane
shear by means of suitable load and displacement fields. All external loads are zero on the basic cell
boundary, except a uniform shear stress r0

xy applied on the upper and lower face, and the equilibrium
reactions rxy on the left and right face. In this case the model neglects all stresses (and corresponding
strains), except the in-plane shear in each basic cell component and the normal vertical component r1

yy in the
bed joint. Non-zero stress and strain components are assumed to be constant in each basic cell component,
except rxy in the unit, which must be a linear function of x to account for the effect of the normal stress r1

yy in
the bed joint. The deformation of the basic cell is approximated as shown in Fig. 10, with the bed joint in
traction. Note that in the neighbouring basic cells (along x-axis) the bed joint is in compression, due to the
antisymmetric loading conditions.

5 It is noted that an explicit symbolic solution does exist and has been obtained. Nevertheless, the complexity of the solution

precludes its use for practical purposes. The system of 20 equations can be easily reduced to a system of nine equations, which can be

solved with any efficient linear solver.
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The internal stresses can be related by the equilibrium at adequately isolated parts of the composite

Upper boundary tr2
xy þ l�rrb

xy ¼ ðt þ lÞr0
xy

Interface brick–head joints r2
xy ¼ �rrb

xy þ
l
2h

r1
yy

Interface brick–bed joints �rrb
xy ¼ r1

xy

ð23Þ

where �rrb
xy is the mean value of rb

xy in the unit.
The normal strain e1yy can be derived from the geometric considerations in Fig. 10, where all the geo-

metric quantities can be defined. Neglecting second-order terms, it is straightforward to obtain

e1yy ffi
2t0 � 2t

2t
ffi Dy þ ðt=lÞDy

2t
; e2xy � �eebxy ¼

Dy
2t

þ Dy
2l

ð24Þ

which lead to

e1yy ¼ e2xy � �eebxy ð25Þ

and, introducing the linear elastic relation between stress and strain, finally

r1
yy ¼ E1ð�eebxy � e2xyÞ ð26Þ

Eqs. (23) and (26), combined with the shear stress–strain relations

rk
xy ¼ 2Gke

k
xy ðk ¼ b; 1; 2Þ ð27Þ

yield the shear stresses in the basic cell components

r2
xy ¼ r0

xy

lE1 þ 4hGb

lE1 þ 4hGb þ E1
l2
lþt

Gb

G2
� 1

� � ¼ kr0
xy

r1
xy ¼ rb

xy ¼ r0
xy

t þ l
l

� t
l
r2
xy

r1
yy ¼ ðr2

xy � �rrb
xyÞ

2h
l

ð28Þ

The shear strains of the basic cell components and of the homogenised material, according to the defor-
mation shown in Fig. 10, are related by the strain–displacement relations

Fig. 10. Model assumptions for xy shear.
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e1xy ffi
1

2

Dx1
2t

�
� Dy

l

�
; e2xy ffi

1

2

Dx2
h

�
þ Dy

t

�

�eebxy ffi
1

2

Dx2
h

�
� Dy

l

�
; exy ffi

ðDx1=2Þ þ Dx2
2ðhþ tÞ

ð29Þ

which lead to

exy ¼
1

hþ t
ðl�eebxy

	
þ te2xyÞ

h
lþ t

þ te1xy þ ðe2xy � �eebxyÞ
t2

lþ t



ð30Þ

The shear strains eixy in the above equation can be calculated from the shear stresses given in Eq. (28) by
means of the elastic relations of Eq. (27), resulting, finally, in the homogenised shear modulus Gxy

Gxy ¼
r0
xy

2exy
¼ lðt þ lÞðt þ hÞ

k tlðtþhÞ
G2

þ ðtþl�ktÞðlh�t2Þ
Gb

þ tðtþlÞðtþl�ktÞ
G1

ð31Þ

where k is defined in Eq. (28).

3.4. Out-of-plane shear modulus Gxz

To calculate the homogenised shear modulus Gxz, simple out-of-plane shear conditions in the xz-plane
are imposed to the basic cell. Right and left faces are loaded with a uniform shear r0

xz, while all other
boundary stresses are zero, except the equilibrium reactions rxz on front and rear face. Only out-of-plane
shear stresses rxz in each basic cell component and r1

yz in the bed joint (and corresponding strains) are taken
into account in the model, while all others are neglected. Non-zero stress and strain components are as-
sumed to be constant, except rb

xz which varies linearly in x to account for the effect of r1
yz in the bed joint.

The deformation of the basic cell in this case is approximated as shown in Fig. 11, where one side has
been fixed for the purpose of graphical clarity. The shear strain e1yz, with geometric considerations, can be
found to be

Fig. 11. Model assumptions for xz shear.
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e1yz ¼
1

2

Dz
2t

ffi Dz2 � ðt=lÞDzb
4t

ð32Þ

The following relations also hold

Interface brick–head joint r2
xz ¼ �rrb

xz �
ðl� tÞ
2h

r1
yz

Right boundary h �rrb
xz

�
þ ðl� tÞ

2h
r1
yz

�
þ 2tr3

xz þ hr2
xz ¼ 2ðt þ hÞr0

xz

Interface cross–bed joints r3
xz ¼ r1

xz

Interface brick–bed joint Dzb ¼ Dz1

ð33Þ

By means of the shear stress–strain relations

rk
xz ¼ 2Gke

k
xz ðk ¼ b; 1; 2Þ ð34Þ

and of the kinematic relations

e1xz ffi
1

2

Dz1
l

; e2xz ffi
1

2

Dz2
t

; �eebxz ffi
1

2

Dzb
l

ð35Þ

Eqs. (32) and (33) yield

e1xz ¼ ebxz ¼ r0
xz

t þ h
2ðtG1 þ hGbÞ

e2xz ¼ ebxz
4hGb þ ðl� tÞG1

4hG2 þ ðl� tÞG1

e1yz ¼
1

2
ðe2xz � ebxzÞ

ð36Þ

and the homogenised shear modulus can be finally found as

Gxz ¼
r0
xz

2exz
¼ r0

xz

2

t þ 1

te2xz þ lebxz
¼ ðt þ lÞðtG1 þ hGbÞ

ðt þ hÞ t 4hGbþðl�tÞG1

4hG2þðl�tÞG1
þ l

� � ð37Þ

3.5. Out-of-plane shear modulus Gyz

The basic cell in this case is assumed to be in simple out-of-plane shear (in the plane yz) by means of
appropriate boundary conditions. The external load is a uniform shear stress r0

yz applied on upper and
lower face of the basic cell, while equilibrium reactions ryz act on front and rear face, where the boundary
condition uy ¼ 0 is imposed. Only the shear stresses ryz (and corresponding strains) are taken into account
in the model. It can be argued, from the deformation shown in Fig. 12 (where one side has been fixed for the
purpose of graphical clarity), that

Upper boundary tr2
yz þ lrb

yz ¼ ðt þ lÞr0
yz

Interface brick–bed joints rb
yz ¼ r1

yz

Interface brick–head joints ebyz ¼ e2yz

ð38Þ

Combining these equations with the stress–strain relations

rk
yz ¼ 2Gke

k
yz ðk ¼ b; 1; 2Þ ð39Þ
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yields

e1yz ¼
Gb

G1

ebyz ¼
Gb

G1

r0
yz

lþ t
2ðlGb þ tG2Þ

ð40Þ

The homogenised strain is

eyz ¼
te1yz þ hebyz
t þ h

ð41Þ

and the homogenised shear modulus Gyz is finally given as

Gyz ¼
r0
yz

2eyz
¼ t þ h

t þ l
G1

lGb þ tG2

tGb þ hG1

ð42Þ

4. Elastic results

The model described in the previous section has been applied to a real masonry basic cell and compared
with the results of an accurate FEA. This was considered a better evaluation of the analytical model that
comparing analytical results with experimental results. In fact, the analytical model needs material data for
the components and this type of data, at least for the mortar, always result from debatable assumptions or
debatable interpretation of experimental results at the composite level (the curing conditions of mortar
inside the composite are impossible to replicate, leading to meaningless results if the mortar specimens have
been cured outside the composite). In the finite element analysis and the analytical model, the properties of
the components can be taken absolutely equal.

Fig. 12. Model assumptions for yz shear.
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The same elastic properties have been adopted for the bed joint, head joint and cross joint
ðE1 ¼ E2 ¼ E3 ¼ Em, m1 ¼ m2 ¼ m3 ¼ mmÞ. Different stiffness ratios between mortar and unit are considered.
This allows to assess the performance of the model for inelastic behaviour. In fact, non-linear behaviour is
associated with (tangent) stiffness degradation and homogenisation of non-linear processes will result in
large stiffness differences between the components. In the limit, the ratio between the stiffness of the different
components is zero (or infinity), once a given components has no stiffness left. The unit dimensions are
210� 100� 52 mm3 and the mortar thickness is 10 mm. The material properties of the unit are kept
constant, whereas the properties of the mortar are varied. For the unit, the Young’s modulus Eb is 20 GPa

Fig. 13. Comparison between the micro-mechanical model and FEA results for different stiffness ratios: (a) Young’s moduli,

(b) Poisson’s ratio and (c) Shear moduli.
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and the Poisson’s ratio mb is 0.15. For the mortar, the Young’s modulus is varied to yield a ratio Eb=Em

ranging from 1 to 1000. The Poisson’s ratio mm is kept constant to 0.15.
The adopted range of Eb=Em is very large (up to 1000), if only linear elastic behaviour of mortar is

considered. However, those high values are indeed encountered if inelastic behaviour is included. In such
case, Eb and Em should be understood as linearised tangent Young’s moduli, representing a measure of the
degradation of the (tangent/secant) stiffness matrices utilised in the numerical procedures adopted to solve
the non-linear problem. Note that the ratio Eb=Em tends to infinity when softening of the mortar is
complete and only the unit remains structurally active.

The elastic properties of the homogenised material, calculated by means of the proposed micro-me-
chanical model, are compared in Fig. 13 with the values obtained by FE analysis. The agreement is very
good in the entire range 16Eb=Em 6 1000. Fig. 14 gives the relative error of the elastic parameters pre-
dicted by the proposed model and show that it is always 6 6%. The thinner curves in Fig. 14 (simplified
model) give the results of a simplified model (Ex only), derived from the model presented in the paper, but
where the deformation mechanisms of the bed joint, mentioned in Section 3.1, have not been taken into
account. The simplified model therefore neglects the main effects due to the misalignment of the units in the
masonry wall and coincides with the full model when the units are aligned in the wall. The simplified model
is, therefore, closer to the standard two-step homogenisation referred to in Chapter 1. Fig. 14 also includes
the results of the standard two-step homogenisation of Lourenc�o (1997). A non-acceptable error up to 45%
is found in such case, for the homogenisation of the elastic Young’s modulus along the x-direction. Di-
rections y and z are not shown in the picture for the sake of clarity of the picture. Less pronounced dif-
ferences are found in these directions as the unit geometry if oriented in the x-direction and the running
bond reduces largely the influence of the head joint for homogenisation in the y-direction, see Lourenc�o
(1997).

For large ratios Eb=Em the simplified model predicts value of Ex, mxz and Gxz much smaller than the actual
values obtained by FEA. The large and increasing errors of the simplified model on these variables (up to
50%) indicate that for very degraded mortar the neglected deformation mechanisms of the bed joint
contribute significantly to the overall basic cell behaviour. In the proposed micro-mechanical model the in-
plane shear resistance of the bed joint (r1

xy) is responsible for the increased stiffness in the x-direction (up to
50%), which could not be accounted for only with the normal stresses in the unit and in the mortar. This
increase of the stiffness in x yields also higher Poisson’s coefficient in y and z. The vertical normal stress in
the bed joint (r1

yy) contributes to the in-plane shear stiffness, while the out-of-plane shear (r1
yz) can double

(for very large ratios Eb=Em) the shear resistance of the basic cell to a shear load r0
xz calculated with the

simplified model.

5. A homogenised failure criterion

Failure of quasi-brittle materials such as concrete and masonry is a difficult issue. Even for apparently
simple loading conditions such as uniaxial compression, failure mechanisms denoted as Mode I, Mode II or
local crushing are the object of a long-going debate among researchers, see van Mier (1998) for a discussion.
For masonry under uniaxial compression, a lot of researchers claim that mortar is subjected to triaxial
compression and the unit is in a mixed uniaxial compression–biaxial tension, see e.g. Hendry (1998). The
assumption that failure of masonry is governed solely by the tensile failure of the unit, induced by the
expansion effect of mortar, is certainly highly debatable because the influence of the micro-structure (voids,
inclusions, etc.) is also a key issue. A discussion on these aspects is out of the scope of the present paper and
will not be carried out.

The sole objective of this section is to demonstrate that the shape of the anisotropic failure surface based
on the micro-mechanical homogenised model is reasonable and seems to be able to reproduce experimental
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results available in the literature. A direct connection to the triggered failure modes is not the issue here.
Currently, a research project being carried out at University of Minho is addressing these issues.

The homogenised micro-mechanical model allows to calculate not only the homogenised material
properties of the basic cell, but also stresses and strains in each basic cell component. Making use of the
superposition principle, holding up to failure if an elastic–brittle behaviour is assumed for mortar and unit,
the stress distribution for an arbitrary loading case can be derived by linear combination of the solutions of
the six basic problems presented in Chapter 3.

Then, the failure load for the homogenised cell results from reaching the failure criteria of any of the two
components. For the purpose of this section, the simplest failure criteria can be considered for the unit and

Fig. 14. Comparison between the micro-mechanical model and FEA results for different stiffness ratios: (a) Young’s moduli,

(b) Poisson’s ratio and (c) Shear moduli.
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mortar. Assuming that both materials are isotropic, the Rankine yield surface has been assumed to describe
the tensile behaviour, while the classic von Mises criteria has been adopted to describe the compression
behaviour, see Fig. 15. These are defined by

Rankine: rk
p ¼ rk

t

von Mises: rk
Mises ¼ rk

c

; k ¼ 1; 2; b ð43Þ

where rk
p is the maximum principal tensile stress, rk

Mises is the equivalent von Mises stress, and rk
t , r

k
c are the

tensile and compressive strengths of the component k. It is stressed that von Mises is hardly acceptable as a
failure criterion for frictional materials subjected to general three-dimensional stress states, which is not the
case here. On the contrary, it can approximate failure in the compression–compression regime or the
tension–compression regime for plane stress problems, as adopted here. It has been used for this purpose by
a number of authors.

Fig. 16 shows the resulting failure surfaces in the plane stress space (r1, r2) for a test case, where the
principal loading stress directions coincide with the material axes, i.e. only in-plane normal stresses r1, r2

and no shearing are applied on the cell faces. The material and geometric parameters for unit and mortar,
which are defined in the picture, aim at reproducing the results from Page (1981, 1983). In the micro-
mechanical model, the principal directions in the bed joint do not coincide with the material axes even in the
absence of shear loading, due to presence of shear in the bed joint. The intersection of all failure surfaces
(the thicker line in Fig. 16a which is reproduced in Fig. 16b) is the failure surface of the homogenised basic
cell. In the unit, due to the variation of rb

xx with x, the compression failure criteria is applied to the point
which leads to a maximum of the von Mises stress, which can be easily calculated.

The stresses in Fig. 16 have been normalised by the mortar tensile strength (rtm) for the purpose of
comparison with experimental results. It can be noted that the plot of the yield stress in the unit of Fig. 16a
is not a perfect ellipse (check top and bottom parts): actually it is the intersection (worst value) of two
different von Mises ellipses, corresponding to the maximum and minimum values of the stress rb

xx, which
has been assumed to vary linearly with x in the unit. For a given stress path, the failure loads and the type
of failure mechanism depend strictly on geometry, on elastic material properties and above all on the

Fig. 15. Composite von Mises–Rankine failure criteria in the principal stress space.
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relative material strengths of the different cell components. Note that the direction of the maximum
principal stress in each component does not correspond always to the same material direction, but does
change with the load ratio r1=r2. Additionally, the tensile stress of the unit in the compression–compression
range is rzz as the lateral expansion in z of the mortar (prevented in x and y by the biaxial compression) is
the cause of a tensile stress state of the unit in the direction z.

According to the proposed model, Fig. 16b shows that, for the selected material and geometric prop-
erties, failure by tension of the head joint is expected in the tension–compression range, while tension in the
bed joint is the cause of the failure in the compression–tension range. In the compression–compression
range, three mechanisms are responsible of the failure of the cell for decreasing r1=r2 ratios: tensile failure
in the bed joint (for very high ratios), compressive failure in the head joint and compressive failure in the
bed joint. Again, it is believed that these conclusions are debatable and more research is needed on the issue
of compressive failure of masonry.

Nevertheless, a comparison between the results obtained with the micro-mechanical model and the
experimental results of Page (1981, 1983) are given in Fig. 17. The agreement in the actual values is mis-
leading as the parameters of the micro-mechanical model were fitted to obtain the actual uniaxial strengths
exhibited in the experiments. Nevertheless, very good agreement is found in the shape of the yield surface,
indicating that the proposed model can be used as a possible macro-model to represent the composite
failure of masonry. Such an approach might reduce the effort to develop and implement specific complex
macro-models for the composite behaviour of masonry such as in (Lourenc�o et al., 1998).

It is stressed that the present work is, at this stage, mostly fundamental and represents a contribution to
researchers working in the homogenisation field. Homogenisation methods represent powerful tools
available for analysts, but are not yet fully developed. The aim of this section is only to demonstrate that an
anisotropic failure criterion similar to the criteria observed experimentally can be obtained. Given the
difficulties in adequately measuring mortar and interface properties, i.e. the absence of adequate experi-
mental values to assess the model, and the actual simplicity of the model, the analytical results presented
seem of value to the authors.

Finally, it must be stressed that failure by tension of the head joints will not imply necessarily the failure
of the composite system in the macroscale, as adopted in this paper. For the simplified approach used here,
this seems the most reasonable assumption (i.e. if the weakest link fails, the system fails). The issue of actual
non-linear behaviour of the components with progressive stiffness degradation must be assessed elsewhere.

Fig. 16. Calculated micro-mechanical failure criterion for masonry under biaxial in-plane loading (principal axes coincident with

material axes): (a) complete failure modes of the unit and mortar and (b) composite masonry failure.

A. Zucchini, P.B. Lourenc�o / International Journal of Solids and Structures 39 (2002) 3233–3255 3253



The definition of failure is a tricky issue for a composite material such masonry. The well-known experi-
mental results of Page (1981, 1983) indeed result from a definition of failure in compression as early
splitting of the bed joints in tension, in the case of compression parallel to the bed joints, see Dhanasekar
et al. (1985).

6. Conclusions

This paper presents a novel micro-mechanical homogenisation model for masonry, which includes ad-
ditional deformation modes of the basic cell. From a comparison with the results obtained in a detailed
finite element simulation of the basic cell, it is demonstrated that relatively small errors occur in the ho-
mogenisation process, by including these mechanisms. The proposed one-step homogenisation represents a
major development with respect to the standard two-step homogenisation process, head and bed joints
being introduced successively, in which very large errors occur for large differences between the unit and
mortar stiffness, Lourenc�o et al. (1998).

Finally, it is shown that the anisotropic failure surface obtained from the proposed micro-mechanical
model, assuming elastic–brittle behaviour of unit and mortar, seems to, qualitatively, reproduce well the
experimental results available for the composite behaviour of masonry. The quantitative assessment of the
model cannot be addressed at this stage, due to the reduced experimental data available. It is expected that
interface behaviour and progressive stiffness degradation must be included in the simplified homogenisation
techniques to assess their quantitative performance.
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